

Maharashtra State Board of Secondary & Higher Secondary School, Pune

Department of Electronics Bifocal

Subject: Electronics (C2) Std: Twelve

Faculty: Science

Syllabus

XII Electronics(Theory & Practical)

Theory Index

Sr. No.	Units / Topics	Weightage	
		Compulsory	With option
1	Number systems	07	15
2	Logic Gates	08	15
3	Semiconductor Families	05	10
4	Combinational Logic Circuits	10	20
5	Electronic Counters	10	20
6	A/D and D/A Converters	6	12
7	Computer Fundamentals	4	8
	Total	50	100

Syllabus

Sr. No.	Name of the Topic	Scope of Syllabus
1.	Number Systems	 Decimal Number System Binary Number System Hexadecimal Number System BCD code Binary to Decimal conversion Decimal to Binary conversion Hex to Binary & Binary to Hex conversion Hex to Decimal & Decimal to Hex conversion ASCII code – Binary Arithmetic.
2.	Logic Gates	 Study of Basic Gates(NOT, OR, AND) Study of Universal Gates(NAND, NOR, EX-OR) Boolean algebra NAND, NOR as universal building blocks Demorgan's Theorem Half Adder Full Adder
3.	Semiconductor Digital IC's	 Introduction of logic families Bipolar logic families Unipolar logic families Characteristics of digital IC's TTL NAND Gate – CMOs , NAND ,NOT , NOR Gates Open collector TTL NOT Gate Tristate concept Tristate TTL NOT Gate

4.	Combinational Logic Circuits	 Multiplexer and their use in Combinational logic design Combinational logic design using multiplexer Demultiplexer and their use in Combinational logic design Encoder Priority Encoder Decoder and drivers for display devices
5.	Electronic Counters	 SR Flip Flop & Clocked SR Flip Flop D Flip Flop T Flip Flop JK Flip Flop Edge Triggered Flip Flop Master Slave concept Ripple or Asynchronous Counters Decade Counters Down Counters Ring Counters Shift Registers
6.	A/D and D/A Converters	 Introduction – Digital to Analog converter Weighted Resister Ladder R- 2R Ladder Analog to Digital converter Counter type ADC Successive Approximation ADC
7.	Computer Fundamentals	 Block diagram of Computer Concept of Bus Study of Input Output devices Study of Memory Devices Specifications of PCs.

Practicals

Sr.No.	Practical's Name
1.	Logic Gate - I
2.	Logic Gate - II
3.	Demorgan's Theorem
4.	EX – OR as controlled inverter
5.	Implementation of logic equation
6.	RS Flip-Flop(using NAND/NOR)
7.	Decoder using IC 7447
8.	Full Adder
9.	Half Adder
10.	4 bit adder using IC 7483
11.	Decade Counter
12.	R-2R ladder type D/A Converter
13.	Multiplexer/De - Multiplexer